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163. Generation of ‘Bare ’ FeF* by C—F Bond Activation in the Gas Phase and
Evaluation of Thermochemical Data
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The title compound FeF* has been generated in a Fourier-transform ion-cyclotron-resonance mass spectro-
meter via C—F bond activation by reacting hexafluorobenzene with bare FeQ*. Bracketing experiments provide a
bond-dissociation energy (BDE) for FeF* of 86 < BDE < 101 kcal/mol. High-level CAS-MCSCF pseudopotential
ab initio calculations, including 501036 electronic configurations, predict a BDE(Fe*—F) of 100.9 kcal/mol.

Introduction. — The C—F bond is one of the least reactive bonds in chemistry. Due to
this fact, fluorinated compounds are in widespread application in various fields of
chemistry and technology [1]. Ther inertness of these compounds is not only due to the
relatively high bond-dissociation energy (BDE) of the C—F bond (e.g. BDE(C—F) = 116
kcal/mol for C(F,) [2] but also results from its small polarizability, thus giving rise to large
kinetic barriers. Even for transition-metal complexes'), which often lower activation
energies and in the presence of which catalytic reactions are feasible, C—F bond activa-
tion 1s rare in both the condensed {4] and the gas phases [5] [6]. In this communication, we
report the generation of ‘bare’ FeF™ in the gas phase by reacting FeO™ with hexafluoro-
benzene. Both, experimental studies and high-level ab initio MO calculations are used to
obtain thermochemical data on FeF*, including the bond-dissociation energy for the
process FeF*—Fe* + F-.

Experimental and Theoretical Section. — The experiments have been performed by
using a Spectrospin CMS 47X Fourier-transform ion-cyclotron-resonance mass spec-
trometer?). Briefly, Fe* ions were formed by laser desorption/ionization in an external ion
source, transferred into the analyzer cell, and trapped in the field of a superconducting
magnet (Oxford Instruments), which has a maximum field strength of 7.05 Tesla. The
isolation of the *Fe™ isotope, and all further isolations, have been performed by using
FERETS [7], and ions have been thermalized by collisions with Ar at a pressure of 1077
mbar. FeO" was formed by pulsed-in N,O [8], isolated, collisionally cooled, and sub-
sequently reacted with hexafluorobenzene, which was introduced via a leak valve. For
further ion-molecule reactions, FeF* was again isolated and allowed to react with differ-
ent substrates.

) For recent reviews on F-containing transition-metal complexes, see [3].
3} For a detailed description of the machine and the experimental set-up, see [6].
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Ab initio SCF calculations have been carried out by using the GAMESS program
package [9] including the pseudopotential method of Durand and Barthelat [10]. For the
Fe-atom, we have employed a valence GTO basis in the contraction (6s, 3p, 8d//2111/
111/32111) with a pseudopotential parametrized for the three lowest states of the neutral
and cationic metal®). The F-atom is treated by using an all-electron basis (9s, 6p//4211}1/
21111) contracted to a DZ basis, to which one d-polarization function (o = 0.65) has
been added. To account for the effects of correlation energy, the complete active valence
space multiconfiguration SCF procedure (CAS-MCSCF) has been applied. The inclusion
of the whole atomic orbital basis into the configuration space leads to a total of 501036
configuration for FeF*. The optimal Fe*—F distance and the dissociation curve have
been obtained by variation of the bond length of Fe*—F followed by a polynominal
fitting.

Results and Discussion, — Cationic MX" ions (X = Cl, Br, I) can be formed by the
reaction of the corresponding methy! halogenides with ‘bare’ M* in the gas phase, and the
transfer of X to M™ often occurs without an activation barrier {12]. However, CH,F does
not react with ground-state Fe*, thus setting an upper limit for the BDE(Fe*—F) of 113
kcal/mol [13] (Egn. I).

Fe'+ CH;Ff ——~ FeF + CH; [BDE(FeF*)sna kcal/mol )

In our experiment, FeF* has been formed from ‘bare’ Fe* by the reaction sequence
depicted in Egn. 2. In the first step, the highly reactive*) cationic metal-oxo species FeO™ is
formed from thermalized Fe* ions, which subsequently affords C—F bond activation of
hexafluorobenzene to yield FeF*?). This reaction permits the convenient generation of
FeF* under the relatively well-defined conditions of an ion-molecule reaction, and thus
will allow to study in the future the reactivity of FeF* with other substrates as well.
Assuming the pentafluorophenoxy radical as the neutral product of Reaction 2a, a lower
limit of 86 kcal/mol is obtained for the BDE of FeF*¢). The assignment of C,F,O as a
pentafluorophenoxy radical is supported by the generation of C,F,O* in Reaction 2b
which clearly points to the formation of a C—O bond in the reaction of FeO* with C,F,.

(a)

+ .
(i FeF * GiFO
+ + N0 + CgFg | 30% : <
Fe' — 1o FeO BDE(FeF ) = 86 kealimol | (2)
2 (b)

N
b +
— C:F,0" + FeF,

%) The full description of the computational details of the pseudopotential parametrization will be published
separately, ¢f. [11].

4 ‘Bare’ FeO is even capable of activating methane [14a, b]. There are four low-lying states for FeO™ (*z, 44,
4¢$,and ‘Z*). An experimental assigment for which of the states is formed in the reaction of Fe* with N,O has
not yet been reported [14c].

%) FeO" reacts with C¢Fg almost at the collision rate, as the experimental value (ko = 1.1 % 10~ cm’® mole-
cule”'s7}) and the rate constant calculated for a Langevin collision process [15] are within the error bars
(£25%) nearly identical (k; = 1.3 x 10~%cm® molecule ™' s7!).

%  For relevant thermochemical data, see [2] {16].
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In addition, FeF" has been found to react with H,O to form FeOH* and HF (Egn. 3).
From the thermochemistry of this reaction, an upper limit of 101 kcal/mol can be derived
for BDE (Fe*—F)’). While similar exchange reactions have been reported for FeCH; [18a]
and FeNHj [18b], the iron halogenides FeX* (X = Cl, Br, I) do not react with H,O [18c].
Therefore, the reactivity of FeF* toward substrates is obviously more similar to that of
FeOH" rather than that of the corresponding FeX" ions; actually, the latter are found to
be much less reactive than FeOH™* [5¢]%).

FeF' + H,0 FeOH' + HF BDE(FeF ") =101 kcal/mol] 3)

Additionally, we have performed high-level MCSCEF ab initio calculations of FeF*?).
The BDE(Fe*—F) has been determined from the energy differences between the global
minimum and a FeF* supermolecule with a Fe—F distance of 20.0 A (see the Fig.). At the
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1 2 3 r(Fe—F)* [A]

Figure. Dissociation curve for FeF™ (°X state) at a) the UHF level and b) after inclusion of electron correlation by
CAS-MCSCF

UHF level, a BDE(Fe*—F) of 38.5 kcal/mol has been obtained for the °%* state of FeF*;
the Fe—F distance for the minimum corresponds to 1.872 A. After inclusion of the effects
of electron correlation by performing an MCSCEF calculation using 501036 configura-
tions of FeF*, the BDE(Fe*—F) dramatically increases to a value of 100.9 kcal/mol; this
number might become somewhat smaller, if the basis-set superposition errors are taken
into account (ca. 5 kcal/mol) [22]. In line with a previous study [20] [21] of MCI* (M =V,
Cr, Mn, Fe), the structure of FeF* can be described as a charge-transfer complex
(Fe**/F") having a minimum bond length of 1.858 A at the MCSCF level of theory.

The experimentally bracketed value of 86 kcal/mol < BDE(Fe*—F) < 101 kcal/mol
and the calculated value of 100.9 kcal/mol agree well with a recent Knudsen cell measure-

7) For a recent value for the BDE(Fe™—OH), see [17].
%) For a comparison of the reactions of FeOH™ and FeCl™ with simple alkanes, see [19].
%) For a similar MCSCF computation of CrCI*, see [20].
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ment [22] of the thermochemistry of FeF,, from which a value of BDE(Fe*—F) = 97 &+ 8
kcal/mol can be derived; in earlier work a value of BDE(Fe*—F) = 94 + 8 kcal/mol was
reported [23] [24]. Further studies to explore the ion-molecule reactions of FeF* with
various substrates are in progress, as well as a comparative, more detailed multi-reference
configuration-interaction calculation of the iron halogenides FeX* (X = CI, Br).

Financial support of our work by the Deutsche Forschungsgemeinschaft, Volkswagen-Stiftung, and Fonds der
Chemischen Industrie is appreciated.
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